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A Systematic Approach to Circuit Design and
Analysis: Classification of Two-VCCS Circuits

Eric A. M. Klumperink

Abstract—This paper discusses a systematic approach to the

design and analysis of circuits, using a transconductor or voltage

controlled current source (VCCS) as a building block. It is

shown that two independent Kirchhoff relations among the VCCS Vin

voltages and currents play a crucial role in establishing a unique

transfer function in two-port circuits with two VCCS'’s. A class of llbias
two-VCCS circuits is defined, which can be subdivided into three

main classes and 14 subclasses, based on different imposeable sets
of two Kirchhoff relations. The classification is useful for circuit *
synthesis and analysis, as it reveals all the basically different

ways to exploit two VCCS'’s, and allows for a unified analy- 1 i ’ | [

sis of classes of circuits. To exemplify this, all complementary M + é* +

. . - ! \ I I Vi I \4 - W !
metal—oxide-semiconducter (CMOS)V" — I converter kernels,  vin (D - la bl 7 "l ) " l"
based on two matched MOS transistor (MOST)-VCCS'’s, are - (1 l —] Vbla: |
generated and analyzed with respect to distortion. It is shown =0V)
that dozens of published transconductor circuits can be classified llbias lIin
in only four classes, with essentially different distortion behavior.

. Ino_Iex Terms—Circuit analysis, circuit synthesis, CMOS analog Fig. 1. Well-known examples of circuits with a transfer function determined
circuits, transconductors. by the transconductances of MOS transistors: the differential pair and current
mirror.
I. INTRODUCTION

INEAR circuits are indispensable in electronic systemgowever' many ather complementary MOS (CMOS) c!rcuns
e.g., for amplification and filtering. Such circuits ar an be considered as transconductance-based circuits (e.qg.,

- ; : . 131-[36]).
usually designed by experienced analog designers, usin

largely intuitive design approach. Based on past experience, ost pubI|cat|on§.on transconductancg—based' CMOS cir-
one or a few known circuit topologies are often reused a its focus on specific aspects of one particular circuit. To the

adapted to fit a specific application [1]. However, the intuitivgnOWI‘c"dge_mc the author only a few papers try to classify _and
design method also has the following disadvantages. compare different approaches [20], [21], [27]. Moreover, if a
L : classification is made, it is often on a ratteet hocbasis. The
1) Known circuit topologies are favored, although ther

: . _ sresent paper aims at a systematic generalized approach. It is
may bg alte.rnat_|ve_topo|og|es that are more SUItabIghown that this is possible by focusing on the functional kernel
In.novatl.on.s In circuit t_opology largely depend on fc’r'of circuits, using a voltage controlled current source (VCCS)
twitous insights Of designers. . as an abstraction. Looking at circuits from this abstract point

2) IF takes a Iong fume for a designer tq be_gome EXPE} view, only a few essentially different operating principles
rienced, and it is not clear how an m_tumve deSIgrPemain. The present paper proposes a formal classification
approach s_hou_lq be taught to. new de5|gner§. Furthggfstem that can be used to clearly identify this operating
more, the |r_1tu|t!ve approach is not very suitable fof)rinciple. It covers all circuits with a functional kernel that can
implementation in a CAD system. be modeled by two VCCS’s and interconnections. Although

These observations argue for the development of desigfis may seem a serious restriction, it is shown in [2] that most

methodol_ogies that explore the design space in a MQImmonly required linear two ports with¥a— 1, I—1, I—V,

systematic way. A recent Ph.D. thesis [2] addresses thi§qy —1 transfer function can be approximated with only two
subject for circuits in which the transconductance afccs's (see also Section I1) and that the classification system
metal-oxide—semiconducter (MOS) transistors is exploite@dyers hundreds of MOST circuit topologies. The classification

(hence transconductance-based circuits). Well-known simpigyt will be proposed renders an overview of all possibilities

examples are the differential pair and current mirror (Fig. 1y exploiting two VCCS’s and allows for a unified analysis
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of classes of circuits. It will be shown that this provides a
powerful means for systematic circuit synthesis and analysis. 4| ~1 —'
The paper is organized as follows. The design philoso- _”:: _H::
phy behind transconductance-based CMOS circuits will be
reviewed in Section Il. In Section lll, the role of Kirchhoff _| _l _‘
relations in establishing a unique transfer function in circuits
with two VCCS'’s is examined. Based on these Kirchhoff | l |
relations a classification system with three main classes and—|7 {, @ ll(V) —; ¢ lI(V)
]
(b)

14 subclasses of circuits is proposed in Section IV. Section V lI(V)
illustrates the usefulness of the classification in some elemen- [

tary circuit synthesis and analysis examples. A more elaborate (@) ©

example I_S presented in Section VI: all transcondudtar Fig. 2. (a) A single NMOST and (b) PMOST can be represented as a VCCS
kernels with two matched MOST-VCCS's are generated, #fith a connection between a voltage and current terminal. By combining two
search of kernels with essentially different distortion behavigif them (c) a VCCS with floating input and output is created (bias sources
Finally, in Section VII conclusions are drawn. have been omitted).

4) The large range of transconductance values that the
II. A DESIGN PHILOSOPHY: transconductance of a MOST can take (elg.$ ---15
TRANSCONDUCTANCEBASED CMOS QRCUITS [2]), which is much Iarger than for integrated resistors.
5) The fact that transconductor circuits often render min-
imum complexity implementations of a certain func-
tion, since a single transistor can often implement a
The following observation was taken as a starting point for ~ transconductor function. This is, for instance, important
a design philosophy for MOST circuit design. Analog circuits in massively parallel analog neural networks [40].
are commonly designed using very simple circuits as building
blocks (e.g., differential pairs and current mirrors). Apart frorB. Formal Modeling Using Two VCCS'’s

the elegance of simple solutions, there are some other goo‘fiormally, a MOST can now be modeled as a VCCS, as
reasons for this design practice. Adding components ter\gsshown in Fig. 2(a) and (b) for an NMOST and PMOST.

'to limit the high-frequency potential of CII"CUItS (few or no,Unfortunately, in both cases there is a connection between one
internal nodes, e.g., [15]) and tends to increase the NOKEie yoltage and one of the current terminals, which limits
level and power consumption. Hence, squeezing maximgl, eyibility of use. However, by using two MOST's a more
functionality out of a minimal set of components seems Woxible VCCS with a floating input and output port can be

be a viable design philosophy. _ implemented, as shown in Fig. 2(c). This VCCS is used as a
.In CMOS qrcuns, transistors are the main _componer_lts. TBﬁilding block for circuit synthesis. The use of this abstrac-

A. Motivation

be understood by considering them as transconductance—ba}égg') VCCS-circuit topology. For instance, a VCCS with one
circuits [2], i.e., circuits with a transfer function that is mainly,o~action between a voltage and current terminal can be
determined by the transconductance values. Important reasiSiamented by a single NMOST [Fig. 2(a)], a single PMOST

for the frequent use of transconductance-based CMOS CiI’CLHi . 2(b)], or by a pair of MOST's with one connection added

are the following. [Fig. 2(c)]. Hence, many different circuits can be viewed as
1) The fact that a VCCS is a good model for a MOSgriations on a theme.
transistor in a broad-frequency band. This is a ma- A vCCS model fits well to the function of a MOST in
jor reason for the use of transconductance-C filtefany circuits, and in many cases it also fits well to a bipolar
at high frequencies [38]. Moreover, the simplicity ofransistor. Moreover, it can also be used to model conductances
transconductance-based circuits often comes with go@fhich may be used as well (e.g., passive resistors or triode
high-frequency performance. _ MOST’s). Finally, more sophisticated transconductor circuits
2) The transconductance of a MOST depends, in genei@n be used if required, e.g., if tight requirements on the
on its biasing point. This electronic variability allows"nearity are posed.
for on-chip self-correction for spread in IC-processing Two VCCS's are at least needed to implement nonunity
and temperature variations (e.g., f-tuning in Gm-C fily_y and /I transfer functions (determined by a ratio of
ters [37], [38]). Moreover, it enables adaptive signalyo transconductance values) apart fréfa/ and -V rela-
processing (e.g., AGC [39]). tions. With two VCCS's as generating elements a graph-based
3) The matching of the transconductance values of equali¥haustive circuit topology generation is performed in [2],
biased MOST's can be good (better than 0.5% current, . s
A generalized treatment of transconductance-based circuits is pursued,

matCh'ng !S pOSSIble [41])' ThIS allows for aCcurat%rasping their main features. The body effect of a MOS transistor is considered
current gains (e.g., current mirror). as a second-order effect and is not taken into account in the first-order model.
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leading to 145 graphs of lineatwo ports with two VCCS’s.  3) Voltage- or Current-Driven Input-, Open-, or Short-
It appears that two ports with infinite- or finite-valued por€Circuited Output: It will be assumed that the circuits have
impedances can be implemented directly, while two portsie signal input and output (two port). Independent voltage
with zero port impedances can be approximated for large current sources will be used to supply the input signal
transconductance values [2]. The set of topologies includasd, if necessary, bias the circuit (for nonlinear VCCS's).
most commonly required linear two ports. Each of thesehe signal output will be presumed to be either open or
graphs can be implemented in several different ways, usisort circuited. Thus, either zero or infinite source and load
combinations of transistors and resistors so that many hundrédpedances are assumed, and biasing by voltage or current
of different circuits are covered. sources. This simplifying assumption is often legitimate, as
Summarizing, it has been argued that a VCCS is a vedgsigners often aim at voltage driving or current driving.
useful model for MOST circuit synthesis and that even witMoreover, of course, linear two ports driven by a source with
two VCCS'’s a large class of circuits is covered. finite impedance and/or loaded by a finite impedance can be
analyzed, using the results for the cases with zero and infinite

impedance.
[ll. THE ROLE OF KIRCHHOFFRELATIONS IN 2VCCS QRCUITS Since the biasing affects the transconductance of the

As discussed in the previous Section, many tWO_port CircuhéC:CS,S, and thus controls the transfer function of a circuit,
with two VCCS's can be constructed. Since VCCS's are tiBe biasing variables will be called control variables from
only components, the two-port parameters of these circuits &@W on. Sometimes it will be convenient to talk about input,
determined by transconductance values. Moreover, of courgentrol, and output signals, regardless of whether voltage or
the interconnections between the VCCS's are important. qgrrent variables are concerned. For this purpose, the variables
will now be shown that two Kirchhoff relations play a crucialis (input), S. (control), andS..; (output) will be used.
role, constituting a suitable basis for a classification system. To#) Unique Solution for VCCS Variablestinear signal-
clarify the discussion, first some basic assumptions and cd¥ocessing functions are often designed, using circuits
ventions will be stated and explained in Section Ill-A. TheRehaving like two ports for whichS.,; is a continuous
the role of Kirchhoff relations is considered in Section llIl-Bfunction of Si, (for every value ofS;, there exists one and

while the different possibilities of imposing Kirchhoff relationsonly one value ofS..). As a result, a unique transfer function
are discussed in Section llI-C. 6Sout/6Sim exists. As VCCS's are presumed to be the only

components available to implement a unique transfer function,

it will be required that a unique solution exists gy, Vi, 1,,

and I, which will be referred to as VCCS variables. Only
1) Two-Port Circuits with Two Interconnected VCCSAs  the VCCS variables are relevant for implementing a transfer

was discussed in Section Il, circuits with two interconnecté@nction. The input current of a voltage sense branch of a

VCCS’s, each having a floating input and output port, are thaCCS is zero (by definition) and, hence, does not contribute

subject of this paper. to S.u;, while the voltage across a controlled current source
2) I(V') Characteristic and VCCS VariablesA VCCS has  can take arbitrary values and, hence, cannot aid in establishing

an I(V) characteristic that is, in general, nonlinear. Used in@ unique transfer function.

linear two-port, the small signal transfer in a quiescence point

(Mo, 1p) is exploited, which can be approximated as

A. Basic Assumptions and Conventions

B. Two Crucial Kirchhoff Relations

I(V) = I(Vo+v) = Lo(Vo) +i(v) = Io(Vo)+a9(Vo)-v (1) Ingeneral, two types of relations determine the voltages and
currents in a network: 1) element equations and 2) Kirchhoff
wherev andi are the small-signal voltage and current excurelations. It will now be shown that two Kirchhoff relations
sions from the biasing point andVp) is the transconductanceplay a crucial role in establishing a unique solution for the
dI/dV, which depends, in general, on the biasing pointCCS variables which are the key 8,,.. For simplicity, the
Mo, 1o). case of linear VCCS'’s will first be discussed. If linear VCCS’s
Only one of the variablesy’ and I of the VCCS is are assumed, biasing sources can be omitbed(@t to zero),
independently controllable, the other is dependent accordinga®the transfer function does not depend on biasing. This leaves
(1). Of course, only the input voltage of a VCCS can directlys with the circuit shown in Fig. 3 which is a linear circuit
be controlled while imposing a current involves feedback t@omprised of six ports: a one port at the input (independent
the voltage terminals. voltage source or current source), a one port at the output
Two equivalent VCCS'’s are assumed that will be indicatg@hort circuit or open) and two two ports (two VCCS's). The
as VCCS and VCC$S and (1) will be used with indexesand solution for all the 12 port variables (six port voltages and six
b (the name assignment is arbitrary, but will be standardizg@@rt currents) requires 12 independent linear relations. As six
later). Hence, the following VCCS variables will be usedelement equations are available:I1}V,), 2) I,(V;), 3) either
Vo, I, Vi, @and I, an independent input voltage or current; 4) eithgr, = 0
or I,yt = 0; 5) input current is zero for VCGS 6) idem
3Two ports with nonlinead’-V', VI, I-V', and I-I characteristics can for VCCS;), six Kirchhoff relations are required to solve all
also be generated [2]. variables. However, it is possible to calculate the solution for
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Fig. 3. Schematic representation of a two port consisting of two VCCS's ¢ : _____b bb ! .(ZHO. or
with a short-circuited or open output and driven by a voltage or current source. (control) L___, ] : infinite)
: VCCS Cireuit !

the VCCS variables from a smaller set of equations, because _ _ _ _ _
. Fig. 4. Two Kirchhoff relations establish a unique relation between the
of the following.

independent variableS;,, and S. (S denotes a voltage or current) and the
1) As discussed in the previous section, the voltages acrd§§S variables. A third relation assigns a linear combination of independent

the controlled current sources can take arbitrary valuBi VCCS variables to outplo..
and, hence, do not put constraints on the VCCS variables
(i.e., skip two relations). to the output variable. However, the latter relation does not

2) The voltage across an independent current source &j€ct the VCCS variables.
open output and the current through an independentSince two independent Kirchhoff relations play such a
voltage source or short circuit can take arbitrary valuggucial role, they constitute a suitable classification criterion.
and, hence, do not put constraints on other variabl#§€ Kirchhoff relation that assigns the output variabig.(

(i.e., skip two relations). or I,.) will not be taken into account in the classification, as

3) The current in the voltage-sense branches of the nkRe core circuit essentially works the same, independent of the
VCCS's is zero (i.e., eliminate two variables). output variable that is used [loosely speaking, this Kirchhoff

4) Either V,y, or I is zero (open or short output) (i.e.,felation can be viewed as a selector of (a linear combination
eliminate one variable). of) variables that are ready for use].

5) The independent source value can be substituted forSummarizing, it has been shown that two Kirchhoff relations
either V,, (voltage source) ofy, (current source) (i.e., @MoNng the VCCS variables and independent input variables
eliminate one variable). (Fig. 4) play a crucial role in establishing a transfer function

equations]:?r a two port with two VCCS's and, hence, constitute a

Together, this leaves us with only four . ) .
suitable basis for a classification system.

1.(V)a), 11(Vy) and two Kirchhoff relations among the four
VCCS variables (four unknowns) and independent source _. . .
variables. If these two Kirchhoff relations are independent; Different Kirchhoff Relations

four independent linear relations in four unknowns are Before dealing with the actual classification, different types
available, which is necessary and sufficient for a solutionf possible Kirchhoff relation need to be considered. Consider-
The other relations mentioned above either do not impoiw first KVL, the relation between the VCCS voltage variables
constraints on the VCCS variables or force them to zero &; andV, and an independent voltage (or sum of voltages)

to a (known) independent source value. Vina. €an be written in the following general form:

If the I_(V) relations are nor_1I|_near, two mde_pendent Kirch- oV + oV = Vi 2)
hoff relations can also be sufficient for a solution, but alterna-
tively no or multiple solutions may exist. In [2] it is shown that Yy Xbs € {{-10 e #0Va #0;  (3)

a unique solution exists in almost all cabesth a square-law where «, and «, indicate how the corresponding VCCS
(half-parabolic) and exponentidl(V') characteristic. Hence, voltages are connected in the voltage loop. The vakkesnd

the above derivation is also useful for these nonlinear casesillow for different orientations of the positive and negative
(and probably more). The main difference is that additiongbltage terminals of the VCCS'’s. The value zero indicates that
independent sources are introduced, appearing in the Kirchh@é voltage terminals of a VCCS do not occur in the voltage
relations. These sources bias the VCCS'’s, and act as cgop. This leads to eight possible equations. Fortunately, this
trol variables (change transconductance and, hence, trangigmber can be reduced because of the following.
parameters). Fig. 4 illustrates the role of Kirchhoff relations. 1) Many relations differ only in sign. Such a change of

Two Kirchhoff relations establish a unique function frosh, sign corresponds to exchanging the terminals of the
to the VCCS variables. A further Kirchhoff relation assigns a independent source. Obviously, this does not change the

linear combination of VCCS variables and the input variable  ansfer characteristics of the VCCS.

2) Some relations are equivalent. Forcing VCCS voltige

4The Va, Ia, and Vi, Is; class sometimes render no solution or two is equivalent to fOI‘CII”l.(j/b since the \(CCS S are equiv-
solutions. alent. The name assignment is arbitrary, yet necessary,
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primary VP TABLE |
voltage <: Sum VZ OVERVIEW OF ALL CLASSES OF TwWo-VCCS Qrcuits THAT CAN BE
Kirchhoff secondary <: . CLASSIFIED IN THREE MAIN CLASSES AND 14 SUBCLASSES BASED ON
rrehho Difference V
relations A DIFFERENT SETS OF Two IMPOSEABLE KVL AND/OR KCL EQUATIONS
rim I
current <: PR Tp Sum Iy Main classes | Subclasses e | Vi =
secondary < ]
Difference I A {Vp,V;} v, V.V,
Fig. 5. Overview of possible KVL and KCL relations amongst VCCS (V.V} (VeV} v, V.-V,
variables.
{Ve. Va3 ViV, | VAV,
to relate mathematical analysis results in a unique way Subclasses | 1., L=

to a circuit topology.

3) Some relations are not independent relations between the
VCCS variables and independent sources. Thus they do (LI} (L1} I, LI,
not help to establish a solution.

Eliminating these cases, it appears that three different KVL
relations can be imposed, that can be divided into primary and Subelasses | V.= e
secondary ones in the following ways.

1) Forcing a single VCCS control voltage (by convention

V.): Vp = V,. (P stands foprimary variable, and refers {Vel} v, LT,
to a input voltage or output current of a VCCS)

{Inlg} I L+,

{Lola} L+, LI

{Vels} Vv,

Vil VY, I
2) Forcing the sum of the VCCS control voltages = Vol
V., +V, or differenceVa = V, — V, (sums or differences {v.l} {Valp} V.-V, I,
of primary variables will be referred to asecondary Vol Vv, | Le,
variables).
For currents, a similar reasoning can be followed, leading Vulp Vv | L
to forcing Ip, Is, and IA. Fig. 5 schematically shows all (V1) V.oV, 141,

resulting possibilities.
{Vali} V-V L-L,

IV. CLASSIFICATION BASED ON DIFFERENT

SETS OF TWO KIRCHHOFF RELATIONS . o .
have always been assigned a positive sign. As a resulin

As mentioned in the previous section, the set of tw@) is always equal to one, which eliminates this variable. A
Kirchhoff relations that establishes a unique solution for thgmilar argument holds foB, in KCL relations.
VCCS variables constitutes a suitable classification criterion.|f 3 circuit is to be classified, the set of KVL and/or KCL
The different possible sets of two Kirchhoff relations will nOV\équations must be determined by Writing equations in terms
be determined and used as a classification criterion. Since #{0VCCS variables and independent source variables. For
relations are needed, while KVL and KCL relations are avaikxample, for the differential pair in Fig. 1(a), this leads to
able, the following three main classes can be distinguished: VoV T (@)

1) sets with two KVL relations: thV, V'} class e

2) sets with two KCL relations: thé!, I} class Toias =Ia + Iy (5)

3) sets with one KVL and one KCL relation: thig/, I} thus, it belongs to th¢V, I} class andVa, I} subclass. In

class a similar fashion it can be verified that the current mirror in

Three possibilities for both KVL and KCL can be used: th&19- 1(b) belongs also to thgl/, I} class, yet to thdVa, Ip}
primary, sum, or difference relation. Since the two relatiori/bclass. _ _ _
should be independent, only sets of two different KVL or KCL |n summary, it has been shown that two independent Kirch-
relations are to be considered. Furthermore, the case with fAff relations among the VCCS variables and independent
primary relations need not be considered, since in that ca&d/rce variables play a crucial role in establishing a unique
the circuit can be separated in two independent circuits wigglution for the VCCS variables in two-VCCS circuits. Based
a single VCCS. Such 1VCCS circuits can be classified 1 different sets of two independent imposeable Kirchhoff
two classes: thdV'} and{I} class, corresponding to forcingrelations, two-VCCS circuits can be classified in three main
the VCCS voltage or current. However, if at least one of tHd@sses and 14 subclasses.
Kirchhoff relations is a secondary one, the circuit can no longer
be divided into two one-VCCS circuits and will be designated
as a two-VCCS circuit.

Together, three main classes with 14 subclasses are found, aéhe usefulness of the classification will now be illustrated
shown in Table I: three subclasses for #i€ V'} and {7, I} by means of some simple circuit synthesis and analysis ex-
class and eight for théV, I'} class. The variables of VCGS amples.

V. APPLICATION EXAMPLE I:
CIRCUIT SYNTHESIS AND ANALYSIS
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l laout i Taout
+
Vsum/2+C) Vdif72 \_’a lla lout Vsum/2+<) Vdif/2 ,_‘ Iout
- + - —> - +/~\" >
' —— " —> NN
% m/2+<) Vi Ly vSum/2+() v L—'
S Vbellb ]

. l Ibout = Ibout

(@)

Vsum/ZT <>+Vdif_/2 - Iout Vsum/2f C) +Vdif/2 H Iout
Tt =" — o F
Veum/2 C) Vin N Vsum/2 () Vin H

(b)

Vsum/2 +<>+Vdif/2 I

o <« | lout —_—

< .
) in _Cbeyb Vsum/2_<

VSUWZT(>+Vdif/2 =

- &

Vsum/2 +<

©

Fig. 6. Different implementations of Vx, Va} circuits resulting in: (a) the transconductor proposed in [10]; (b) the same in [15]; and (d)-ife
converter proposed in [12].

A. {Vs, Va} Circuit Synthesis yet an additional common terminal. Again, the previously
Wmentioned VCCS implementations of Fig. 6(a) and (b) can
be used. However, alternatively, two MOST’s of the same
type can be used as shown in Fig. 6(c) and [12]. Thus, it has

en shown that three well-known circuits can be viewed as
ifferent implementations of &%, Va }-class circuit. Similar
relations exist between other circuits (see [2], [39]).

As an example of circuit synthesis it will be shown ho
some well-known{ Vs, Va } circuit topologies [10], [15], [12]
shown in Fig. 6 can be found by systematically consideri
different design options. The VCCS schematics at the le
in Fig. 6 show three circuits in which the sum, + V; is
forced equal toV,., (by two sourcesVi,./2), while the
differenceV, —V;, is forced equal td/y; s (sourceVy; (/2). The N .
three VCCS circuits differ in the avai{able outputfv/ariables. IE" Circuit Analysis for One Subclass
Fig. 6(a), the individual VCCS currents, and I, and their Circuits belonging tp a subclass share certain proper_ties
differencel,., = I, — I, are all available as output variables@nd can be analyzed in one run, provided that a generalized
This requires a VCCS with separated voltage and curreYﬁ:CS model equatlc_)n is available. For mstance, in the above
terminals, which can be implemented by a complementaly cussed Vs, Va} circuit example, the following square-law
pair of MOST's (Fig. 2(c), [10]). If only the differencé,,; is —I relation can be used:
needed as the output signal, two common-terminal connections I =key(V — VTeq)Q (6)
for the VCCS'’s can be allowed. This can also be implemented
by using the CMOS pairs but, alternatively, a single NMOSThis model can be used for a single MOST and a CMOS pair
and PMOST can be used, as shown in Fig. 6(b) [15]. Finallja3]. Doing so, it can easily be shown, that the square-law
if I.u is to be fed back to the input, to implement &V term cancels in the relation betwe&n; ; and I = I, — I
converter or electronically variable resistor, the VCCS'’s havkand only if k., of VCCS, and VCCS$ is equal. For all three
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cases in Fig. 6, the output curreht,; is then given by 2 Kirchhoff 1 Kirchhoff
relations N , relation
Iout = keq(‘/sum - 2VT€q)‘/(lif (7) Independent — lmerna.l —_— Output
input variables VCCS variables » current

revealing a linear relation betweeW;; and I, wtha —  =—---- el I

|
transconductance tunable by meansigf,,,. (IS gy : |
| t
| vaella(va) | ou
C. Circuits Analysis for an Entire Class Vi, A & !
. . . eeedeeo el |
In the case above, the analysis is restricted to one subclass. (signal) : [ !
In some cases it is even possible to do an analysis for an entire | T Lv) p—
class in one run. Taking a linear analysis for {ié I} class : Yo lb b |
as an example, the following equations hold: (C{/m'c‘;‘;tml | —] !
or |
i i |
Vg + @+ Uy =Vind (8) | _YveesCweut |
i + By - ip =tind (9) Fig. 7. Schematic representation df—/ kernels with two VCCS’s and

independent sources.
where the coefficienty, and 3, take values depending on the

subclass L .
circuits are variations on a theme as far as the actxal

{ow, B} € { {0, 1}, {0, =1}, {1, 0}, {1, 0} } (10) kernel is considered. We will consider the clas§efl kernels,
{1, 1}, {1, -1}, {-1, 1}, {-1, -1} consisting of two matched MOST’s operating as VCCS’s. The

The solution for the primary current variables is aim is to identify kernels that behave essentially differently
with respect to distortion.

Bb9pVina Otplind

e T e — B | w0 — Bom (1)
v = gaVind Tind (12) B. Systematic Generation of M-I Kernels with Two VCCS'’s

aga = Pogy e = Fogy Although a single MOST can be used as a VCCS, it will
i, = — PbgagVind b Jalind (13) appear that there are good reasons to use two of them rather

e — PoGs  wGa — Prgs than one. AllV—I converter kernels consisting of two VCCS's,
_ _YaVind vtind . (14) as shown schematically in Fig. 7, will now be generated
g — Bogs  wGa — Poge systematically, using the classification system. Only classes

Looking at the above four equations, we see that singularitif@g W.hd'Ch 3t Iteazt one gdependfnt ;;oltageTlsbﬁorcl:le d needtto be
can occur since the denominator of the relations can bec:ot Jisiaere ("The :;lset ais inpu t:lo dgtﬁ) at ef " pre}it_enhsh -
zero. This happens for thfls, I} (coefficientsa, and 3, ese cases. 1he hirst column shows the set of two Kirchho

both equal to one) anflV, I } class (both coefficient equal relations (clgss) and t_he second one lists the independe_nt
to —1) for g, = gs. For these cases, there is no unique solutiovr?ltage that is used as input. It appears that three classes with
or no solution two voltage relations exis{{, V'} sets), each subdivided into

Since both the differential pair and current mirror belong\'? cases, while eight classes with a voltage and a current
to the {V, I} class, (11)—(14) hold for both of them. It can™*

ist {V, I} sets).
be verified that the differential pair{{a, Is} class with To find circuits different from a single VCCS with respect to
{aw, B} = —1, 1) has a transconductance from differenti

agistortion, the transfer function and nonlinearity of the various
input voltagewvi,q to i, Of g, - g1/(g9. + g,) for a constant

classes was considered. To analyze nonlinearity, individual
tail current guma = 0). For the current mirror{(Va, Ip} class VCCS'’s have been modeled by a third-order Taylor series

with {cve, B} = {—1, 0} with Va = 0 and, thuspyq = 0) a (@SSume mainly HD2 and HD3)

current gain fromi, = ina t0 ¢ is equal tog, /g, is found.

Thus, one set of equations describes the transfer properties of 1(V, + Vin) — I(Vo) = g1 Vin + g2 Vi2 + g3V (15)
an entire class of circuits, allowing for a systematic analysis

of large groups of circuits [2]. . '
ge group [2] where g1, g2, and gs are proportional to the first-, second-,

and third-order derivatives df(}') to V' in bias pointV;. The
nonlinearity for theV—I kernels has been analyzed symboli-
cally and Table Il lists the coefficients of the first-, second-,
and third-order terms of, and [,. Taking a single VCCS
as reference, we can find the cases with essentially different
Although many papers on MOS transconductor circuits exigistortion behavior. For six cases the coefficients appear to be
(for an overview, see [2], [39], and [42]), very few consistentlgqual to those of the constituting VCCg; ( g2, g3), which
compare different approaches. Such a comparison is burdenedld just as well be achieved by a single VCCS. In two cases
by many differences in circuit implementation. However, usin Vs, Is} and {Va, Ta}) @ unique solution does not always
the classification presented above, it can be shown that maxyst [2]. However, the remaining six cases differ essentially

VI. APPLICATION EXAMPLE II:
CLASSIFICATION OF MOS TRANSCONDUCTORS

A. Introduction
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TABLE 1l P
OVERVIEW OF THE 11 IMPOSEABLE SETS OF TWO KIRCHHOFF RELATIONS
UserFuL FORV —I KERNELS, WITH FOUR DIFFERENT TYPES OF BEHAVIOR (IN
BoLp) (@ = EQUAL g COEFFICIENTS * = NOT ALWAYS A UNIQUE SOLUTION)
S — +
Class * ordel ™ order 3 order Vin
+
coeff. I, oeff. 1,1 coeff. Vpo C
{Vp,Vy} Ve | 88w 8220 821 8320 “Ssn
Vi | 0,8y 0, g3 0, g5
{Ve,Val | Ve | Bio 8o €200 821 €320 83p
4
Vi 10,80 0, gy, 0, g3, Vin(
AN Vi | g2, g2 2:/4, g2/4 | 858, 83/8 +
Vso 4
Vi | 8/2-8/2 La/4, B/ | 2:a/8.-85/8 -
{Velp) Vi [0, 85 0, g, 0. g3 ¢ d)
Vol Vs |08 0. 0. g Fig. 8. Example circuits for the four different transconductor classes listed
(Vol} v ) ] } in Table Il. (a) {Vp, Vx} with constantVs. (b) {Vp, Va} with constant
Pz ro| BBl B "B B "bn Va. (€) {Va, Iz} with constantls. (d) {Vx, Ia} with constant/a .
1Vila} Ve | 8B 81 22> B2a L300 B3a
{Vels} | Ve |* * * N .
behavior is found for casgls;, Va}, although now with
(VeIa} | Vr | &/2,8/2 2:/4,8/4 | g4/8, g:/8 Vs, as signal input, provided thatp = Vs /2 + Va /2.
Fig. 8(b) shows an example of{&’p, VA } circuit [18].
Vol | V. &2z 0,0 o g Others have beer_1 proposed in [14], [19], [22], [23],
S . [29], and [36]. Using differential transconductors as a
& starting point, a{Vp, Va } configuration is also used in
VLY v, | * * several circuits (sometimes referred to as crosscoupling

from a single VCCS. In fact, four different types of distortion
coefficients are found (printed in bold) as follows.

or “current differencing,” e.g., [8], [9], and [35]). Note
that there is an essential difference between circuits
in this class and in the previously discussed one. For
constantls, the VCCS voltages are driven in antiphase,
while they are in phase for constahl,. With 75 as

1) {Vp, V& }: constantVs, with V> as input. The second- output, the signal currents are added in the first case
order terms off, and I, have the same sign, while and subtracted in the second one (however, the noise is
the first- and third-order terms have different signs. ~ added in both cases).

Consequently, second-order distortion is cancelled if 3) {Va, Ic}: constant/s with Vi as input. The second-
I, and I, are subtracted angh, = g2, (for matched order terms are zero for equally biased MOST’s. The
MOST's Vp = Vg/2) (balancing). Since the first- and third-order term also now depends on the second-order
third-order term are both doubled due to current subtrac-  term (g2 dependence). The net result depends on the
tion, HD3 remains the same, independent of the VCCS VCCS characteristic, especially on the Sign of the third-
characteristic. The same behavior is found for case order term. The omnipresent different pair is the best
{Vs, Va} with Vo as input. The cases are equivalent known example of a circuit belonging to this class [see
if Vp = Vg/2 + Va/2, which is the usual case (HD2 Fig. 8(c)].
cancelling). An example of a circuit implementation 4) {Vs, Ia}: constant/a (=0) and Vy as input. Since
is shown in F|g 8(3), [12], and [14] However, many the input voltage is divided over two equal devices,
other (sub)circuits are based on the same basic principle the input voltage can be two-times larger for the same
[5]-[7], [10], [13], [15]-[17], [24]-[28], [30], [31]. distortion (this holds for both HD2 and HD3). This effect
2) {Vp, Va}: constant/a with Vp as input.z, andI, have is independent of the device characteristic. Fig. 8(d)

different ¢ coefficients if their bias-point is different. If
I is used as output, the differences of corresponding
coefficients of VCC$S and VCC$ are found, multiplied

by, respectively Vi, V.2, and V3. As a result, the net

in?

shows a circuit example with equal NMOST'’s [26].
Circuits belonging to the same class are the CMOS pair
in Fig. 2(c) used in [10] and [13] and series connections
of differential pairs (e.g., [5] and [34]).

G,, range is extended at the low end. Mg2/Ag; < In summary, allV’-I converter kernels with two MOST-
g2/91 0r Ags/Ag1 < gs/g1 linearity is improved, which VCCS’s have been generated and analyzed with respect to
depends strongly on device characteristics. The samlistortion, using the proposed classification. This systematic
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approach unveils that dozens of published circuits can bpg]
classified in only four classes with basically different distortioP1 N
behavior.

It

(11]
VII.

has been shown that two independent Kirchhoff relations?]

CONCLUSIONS

among the VCCS variables and independent variables play a

cruc

ial role in establishing a unique transfer function in tw 3]

VCCS circuits. Based on different sets of two imposeable
Kirchhoff relations, two-VCCS circuits can be classified in

three main classes and 14 subclasses.

(24]

The classification system is shown to be useful for circuits]

desi
1)

2)

3)

gn and analysis because of the following. [16]

It presents designers with an overview of all ways to
combine two VCCS’s [e.g., allV-I kernels with two
VCCS'’s have been generated (Table I)]. As VCCS’EN]
can be implemented in various forms, a two-VCCS
circuit can have several transistor level implementatios]
(Fig. 6).

The classification system for two-VCCS circuits divide$L9]
circuits in classes with common properties, i.e., it helps
to recognize that many circuits can be considered g
variations on a theme (e.g., [5]-[7], [10], [13], [15]-[17],
[24]-[28], [30], and [31]). [21]
Having recognized a circuit as a two-VCCS circuit,
it can be analyzed using hierarchical symbolic macro-
models that express the properties of a VCCS cik?
cuit in properties of the VCCS implementation (e.g.,
Table Il. The Taylor coefficients of a two-VCCS circuit[23]
are expressed in Taylor coefficients of the VCCS). The
hierarchy saves a great deal of analysis effort angly
allows for an easy comparison of alternative VCCS
implementations. [25]
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