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Abstract— This paper deals with the problem of realizing 
wideband receiver front-ends in downscaled CMOS technologies, 
which are highly wanted for multi-standard radio receivers and 
cognitive radio applications. Instead of using many narrowband 
inductor based receivers, we prefer the use of one wideband 
receiver with sufficient bandwidth to cover all popular frequency 
bands up to 6GHz or even 10GHz. To relax RF filter 
requirements, high linearity is required, while high gain and low 
noise are important for good sensitivity. Downscaled CMOS 
technologies feature high speed transistors, but also decreasing 
supply voltages and increasing transistor non-idealities, which 
makes it increasingly difficult to achieve high gain and good 
linearity. It will be shown that a combination of a common-gate 
(CG) stage and an admittance-scaled common-source (CS) stage 
has attractive properties for implementing a wideband receiver 
with active balun, while simultaneously canceling the noise and 
distortion of the CG-stage. Example applications in a wideband 
Balun-LNA and combined Balun-LNA-Mixer will be shown. 

I. INTRODUCTION 
Wideband receivers are required for instance in upcoming 

Software-Defined Radio and Cognitive Radio architectures 
and for Ultra Wideband Communication in the 3-10GHz 
bands. There are many mobile wireless communication 
standards that use the frequency spectrum from a few hundred 
MHz up to 6 GHz and they are increasingly integrated in one 
device. Traditionally receivers with narrowband inductor 
based Low Noise Amplifiers (LNAs) are used, but this 
becomes more and more impractical if many radio interfaces 
are to be integrated. Moreover, on-chip inductors do not scale 
much with technology downscaling, so relatively to other 
components they become more expensive and therefore we 
prefer to avoid their use. Single-ended input LNAs are 
preferred to save I/O pins and because antennas and RF filters 
usually produce single ended signals. On the other hand, 
differential signaling in the receive chain is preferred in order 
to reduce second order distortion and to reject power supply 
and substrate noise. To avoid the use of an external broadband 
balun and its accompanying losses which add directly to the 
noise figure, it is advantageous to integrate a balun on chip. 

In this paper we will review recently proposed circuits to 
realize wideband linear front-ends with no or only few 
inductors in CMOS [1]-[14]. The main focus is on LNAs, but 
we will also briefly discuss wideband I/Q down-converters. In 
section II we will discuss the relevance of high linearity in 
such receivers. In section III we will present an overview of 
recently proposed wideband receiver front-ends. We will 

discuss why a Common Gate (CG)-stage is problematic as 
inductor-less wideband LNA. In section IV we show that 
combining a CG-stage with a Common Source (CS)-stage 
allows for achieving more gain. Furthermore, it can 
implement a wideband active balun in a very compact way, 
while simultaneously canceling the noise and distortion 
contribution of the CG-transistor. If the CS-stage is carefully 
optimized, both the linearity and noise of the resulting 
combined Balun-LNA can be good. Finally section V 
discusses a way of increasing the gain, while maintaining a 
high bandwidth, by avoiding making voltage gain at RF. 

II. LINEARITY REQUIREMENTS FOR WIDEBAND RECEIVERS 
Like a narrowband zero-IF, a wideband receiver is sensitive 

to the 2nd order intermodulation product generated by an AM 
modulated carrier via AM detection. However, a wideband 
receiver may also suffer from 2nd order intermodulation 
generated by interferers that have a sum or difference 
frequency equal to the wanted RF-input signal. The response 
to a modulated carrier can be suppressed by AC-coupling 
between the LNA-output and mixer-input and by driving and 
designing the mixer in a well-balanced way [15]. However, 
the intermodulation product generated at a frequency equal to 
the frequency of the wanted signal cannot be separated from 
the signal. Especially standards that operate on large 
bandwidths, like DVB-H (470–862 MHz) [16] or WiMedia 
UWB (3.1–10.6 GHz) [17], have a high probability that a 
combination of interferers renders an in-band intermodulation 
product. A receiver designed for these standards should have 
an LNA with sufficiently high IIP2 (and IIP3) in order to 
handle strong interferers like WLAN (IEEE 802.11a/b/g) and 
the GSM standards. The required intercept points depend 
strongly on the assumed interferer scenario and the assumed 
amount of pre-filtering of the interfering signals. For a 
WiMedia UWB receiver the required IIP2 is above +20 dBm 
and IIP3 above -9 dBm as derived in [18]. For a DVB-H 
receiver, the required IIP2 is in order of +22dBm using a 
GSM/WLAN interferer scenario. 

III. WIDEBAND RECEIVERS IN LITERATURE 
Table I shows an overview of recently published wideband 

LNAs and down-converters in CMOS with no or only a few 
inductors, published at the most important solid-state circuit 
conferences. Different types of techniques have been proposed, 
which will be briefly discussed below. Distributed amplifiers 
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are not discussed as they heavily rely on inductors or 
transmission lines.  

With the increasing fT of MOS transistor, multi-GHz 
negative feedback amplifiers are becoming feasible and some 
interesting results have been achieved recently [3][7][8]. Still, 
several trade-offs exist between impedance matching, gain, 
noise and linearity. Until now, relatively modest IIP3 has been 
achieved which also varies strongly with frequency (typically 
in the range of -15dBm to -4dBm). IIP2 is often not reported, 
despite of its importance for wideband receivers. Furthermore, 
these circuits don't include balun functionality.  

A Common Gate amplifier can achieve wideband 
impedance matching and gain with good linearity, but is it 
difficult to achieve a noise figure below 4dB. Moreover, at 
low supply voltage, there is not much voltage headroom to 
realize high voltage gain. Furthermore, a high load resistance, 
required for high gain, leads to bandwidth limitations. 
Therefore, CG-stages are often used in combination with 
inductive broad-banding to increase the bandwidth. However, 
we would like to avoid such inductors and investigated other 
ways to achieve a high gain. We will discuss now two 
techniques to increase the gain, while using standard 
transistors at 1.2V supply, and without the use of inductors. In 
section IV we explain how one can use a parallel CG- and CS-
stage to realize a noise/distortion canceling LNA which also 
acts as balun, as proposed originally in [1] and later exploited 
and extended in [2][4][5][6][10][11][12][13]. In section V we 
will propose a technique to avoid making voltage gain at RF, 
but do this only after the down-conversion to IF. 

 

IV. SIMULTANEOUS BALANCING AND 
NOISE/DISTORTION CANCELING 

In the sections below we will briefly derive the conditions 
for simultaneous balancing, noise canceling and distortion 
canceling. We will neglect capacitive effects for simplicity. A 
more detailed discussion on high frequency limitations and 
robustness for component variations can be found in [1] [13]. 

A. Balancing (balun operation) 
The Common Gate stage in Figure 1, biased with a current 

source, has a straightforward relation between its voltage gain 
(Av,CG) and its input impedance (Rin,CG). The signal current 
(iRcg) flowing through the load resistor RCG has to be equal to 
the signal current flowing at the input (iin), as there is no 
alternative path to ground. Thus, 

CG

CGvin

CG

CGout
Rcgin R

Av
R

v
ii ,, �

���   (1) 

As a result, the input impedance of the CG-stage can be 
expressed as: 

CGv

CG

in

in
CGin A

R
i
vR

,
, ��    (2) 

For an ideal transistor, having infinite output resistance, 
this is obvious. In that case the input impedance can be written 
as Rin,CG = 1/gm and the gain equals Av,CG = gm·RCG. However, 
(1) and (2) are equally valid when the finite output resistance 
and the body-effect of a real transistor are taken into account. 

TABLE I.     
RECENT WIDEBAND LNAS AND DOWN-CONVERTERS IN CMOS WITH NO OR ONLY A FEW COILS 

# coils Bandwidth 
[GHz] 

Gain NF IIP2 
[dBm] 

IIP3 Pcore Process Functionality  –  Ref area[mmAV [dB] [dB] [dBm] [mW] V ] Z-matching Technique 2
supply

Bruccoleri et al 0 LNA – Transimpedance 0.25�m 0.2 – 2.0 10 – 14 < 2.4 +12 0 35 JSSC 2004 [1] 0.075 +CS Noise Canceling 2.5V 
4 Balun-LNA – CG+CS 

Noise Canceling 
Cherazi et al +4 +1 0.18�m 0.9 – 5 18 – 19 < 3.5 12 ~0.4 CICC 2005 [2] (sim) (sim) 1.8V 
Zhan et al -4 / 90nm 0 LNA – Transimpedance 0.5 – 8.2 22 – 25 < 2.6 ? 42 ISSCC 2006 [3] -16 2.7V 0.025 Negative Feedback 
Bagheri et al 3–36 with   

IF-AMP 
90nm 2 Balun-LNA+I/Q Mixer 

– CG+CS Stage 0.8 – 6 < 5.5 ? -3.5 29 ISSCC06 [4] [6] 2.5V 0.5 
Blaakmeer et al 90nm 1 LNA – CG+trafo+CS 2.7 – 4.5 18 – 19.6 < 5 ? -8 12.6 RFIC 2006 [5] 1.2V 0.2 Noise Cancelling 
Borremans et al -15 / 90nm 0 LNA – Transimpedance DC – 6 15 – 17.4 < 3.5 ? 9.8 ISSCC06 [7] - 8 1.2V 0.002 with Active Feedback 
Blaakmeer et al   
ESSC06 [12] [13] 

65nm 0 Balun-LNA – CG+CS 0.2 – 5.2 13 – 15.6 < 3.5 +20 0 14 1.2V 0.009 Noise Canceling 
0 LNA – Transimpedance Ramzan et al 

ISSCC2007 [8] 
0.13�m 1 – 7 15 – 17 < 3.5 ? -4.1 25 0.019 with Active Feedback 1.4V 

Lee et al 23  with 90nm 1 LNA+trafo-Balun+ I/Q 
Mixer – Negative FB. 2 – 8 < 4.5 +18 -7 31 ISSCC07 [9] IF-AMP 2.5V 0.09 

Liao et al 12.7 – 
15.7 

+10 / 
+20 

5 LNA – 
JSSC 2007 [10] 1.2 – 11.9 < 5 -6.2 20 0.18�m 

0.59 CG Noise Canceling 1.8V 
0 LNA – nMOS+pMOS 

CG Noise Canceling 
Chen et al 14.5 – 

17.5 
0 / 0.13�m 0.8 – 2.1 < 2.6 ? 17.4 0.01 RFIC2007 [11] +16 1.5V 

Blaakmeer et al 18    no 65nm 0 Balun-LNA+I/Q Mixer 
– Noise Canceling 0.5 – 7 < 5.5 +20 -3 16 ISSCC08 [14] IF-AMP 1.2V <0.01 
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For an impedance match at the input, the input impedance 
of the CG-stage (Rin,CG) should equal the source resistance 
(RS), thus the gain of the CG stage becomes: 

S

CG

CGin

CG
CGv R

R
R
RA ��

,
,

   (3) 

To create a balun, the gain of the CS-stage in Figure 1 
should be equal, but have opposite sign, thus: 

S

CG
CGvCSv R

RAA ���� ,,
   (4) 

B. Noise Canceling 
The noise generated by the CG-transistor in Figure 1 can be 

represented by a current source (in). This current generates 
both a voltage at the input-node (vn,in = �1·in·RS) and a fully 
correlated anti-phase voltage at the CG-output (vn,CG =  
–�1·in·RCG). The factor �1 equals the voltage division between 
the input resistance (Rin,CG) and the source resistance (RS), 
which equals 1/2 in case of impedance matching: 

SCGin

CGin

RR
R

�
�

,

,
1�    (5) 

The noise at the CS-output equals the CG-output noise 
( ), when the CS-gain ACGnCSvinnCSn vAvv ,,., ��� v,CS satisfies (4). 
Thus, the noise contribution of the CG-transistor can be 
canceled, as it becomes a purely common-mode signal at the 
differential output. This proofs that simultaneously balancing 
of the output signal and noise canceling is obtained. As the 
noise of the CG-transistor is cancelled, the CS-stage mainly 
determines the noise. By admittance scaling this noise 
contribution can be reduced at the cost of power consumption.  

C. Distortion Canceling 
As derived in [1], not only the noise of the impedance 

matching device, but also its distortion, due to the non-
linearity of the transconductance, is canceled. We will show 
that also non-linearity of the output conductance of the CG-
transistor is canceled.  

The source signal (vs) causes a non-linear drain-source 
current (ids) which is converted into a non-linear voltage at the 
input (vin) via the (linear) source resistor RS.  The non-linear 

input voltage (vin) can be written as a Taylor expansion of the 
signal source voltage (vs): 

NLsssssin vvvvvvv ������������ 1
4

4
3

3
2

21 ����� �  (6) 
where the �’s represent Taylor coefficients and vNL contains 
all unwanted nonlinear terms and the first Taylor coefficient 
(�1) is defined in (5). 

The output voltage of the CG-stage can be written as: 

� 	
S

CG
NLsCG

S

ins
CGinCGout R

RvvR
R

vvRiv �����
�

��� )(, 11 �     (7) 

where (6) is used. The output voltage of the CS-stage can be 
written using (4): 

� 	
S

CG
NLs

S

CG
inCSout R

Rvv
R
Rvv ������ 1�,

  (8) 

The difference in sign of the wanted signal vs and 
unwanted signal vNL in (7) and (8) can be exploited: after 
subtraction only the linear signal remains: 

S

CG
sCSoutCGoutdiffout R

Rvvvv ���� ,,,
  (9) 

In conclusion, all noise and distortion currents generated by 
the CG-transistor can be canceled, irrespective whether 
produced due to non-linearity of the transconductance or non-
linearity of the output conductance. The gain required in the 
CS-stage to cancel the distortion products of the CG-transistor 
equals the gain required to obtain output balancing, leading to 
the conclusion that simultaneous balancing and cancelation of 
unwanted noise and distortion currents of the CG transistor is 
possible. As the distortion due to the CG-transistor is canceled, 
while RCG is normally quite linear, the CS-stage will 
determine the overall linearity of the complete LNA. The 
linearity of the CS-stage has been analyzed in detail in [13]. It 
appears possible to realize very good IIP2 values above 
+20dBm, if the CS-stage is carefully optimized. The 
simultaneous noise canceling and distortion canceling idea has 
recently also been exploited to achieve high IIP3 [11].  

V.  BALUN-LNA WITH I/Q DOWN-CONVERTER 
Although parallel operating CG and CS stages reduce the 

required voltage gain of the CG stage by a factor two, 
achieving a high bandwidth when driving a significant 
capacitive load is problematic. For 50� matching and 12dB 
voltage gain, a drain resistance of more than 200� is needed, 
which limits the load capacitance to 80fF for 10GHz -3dB 
bandwidth. To obtain more bandwidth, we propose to avoid 
creating voltage gain at RF, but do this at IF. Fig. 2 shows the 
principle: a CG-CS stage is stacked with current commutating 
mixer. The mixer transistors are in saturation and present a 
low impedance to the CG-CS stage output, therefore the 
bandwidth at these nodes is high. At IF, where much less 
bandwidth is required, the mixer output current is converted to 
voltage. The drain impedance is Z for the CG-stage and Z/4 
for the CS-stage to realize simultaneous balancing and 
noise/distortion canceling at IF. By using LO square-wave 
signals with 25% duty-cycle, one CG-CS transconductance- 
stage can supply the required signal current for both a 
differential I- and Q- output. This results in a very power 
efficient down-converter. The IF-filter averages the current 
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RCG RCS
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Fig. 1 The Balun-LNA, a combination of a Common Gate (CG) and 
admittance scaled Common Source (CS) stage to realize simultaneous output 
balancing, noise and distortion canceling  
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