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Abstract—This paper shows that the group delay of a delay 
circuit does not  give sufficient information to predict the delay 
vs. frequency. A new criterion (fϕ=0) is proposed that 
characterizes the delay variations over a specified frequency 
range.  The mathematical derivation of fϕ=0 for a single delay 
block and a cascade of delay blocks is shown. As examples the 
criterion is applied to the design of an RC and LC delay block. 
Delay predictions based on fϕ=0 are compared with simulation 
results, showing reasonable agreement. 

I. INTRODUCTION 
Time delay circuits have wide applications in different 

systems, such as beamforming systems, delay locked loops, 
filters and equalizers. In some of these applications it is 
important to maintain constant delay over a significant 
frequency band, e.g. for wideband beamforming systems 
("phased array") [1]. This is because delay variations result in 
changes of the beam pattern, such as in beam direction and 
side lobe levels [1]. As practical delay circuits show some 
delay variation over frequency, characterizing this variation 
over the relevant band is important.  

The quality of time delay circuits is often evaluated in 
terms of group delay. In this paper we want to show that group 
delay is useful, but not sufficient, to characterize delay 
variation vs. frequency. This paper proposes a criterion that, 
together with group delay, relates the delay variation and 
frequency bandwidth to each other. 

Fig 1 shows the phase vs. frequency characteristic of an 
ideal phase shifter and an ideal time delay block with time 
delay τd (in this paper all the frequency and phase axes are 
linear). 

 
Figure 1.  Phase vs. frequency  for (a) an ideal phase shifter and (b) an  

ideal time delay element  

Both an ideal phase shifter and ideal delay block should 
have unity gain, but they have different group delays versus 
frequency. Group delay (τg) is defined as follows [2]:              
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For an ideal phase shifter, the group delay vs. frequency is 
constant and equal to zero. For an ideal time delay block it is 
also constant but non-zero, with a group delay equal to the 
amount of time delay (see Fig. 1). 

  For a phase shifter block the conditions of zero group 
delay and unity amplitude gain vs. frequency defines the 
necessary and sufficient conditions to define the block as an 
ideal phase shifter. However, the condition of constant group 
delay and unity amplitude gain vs. frequency does not 
necessarily correspond to constant time delay. Fig 2a shows 
two phase vs. frequency plots which have identical and 
constant group delay for the frequency range [f0-Δf , f0+Δf]. 
However, only line 1 crosses through the point (f=0,ϕ=0) 
which defines the characteristic of an ideal time delay block.  

 
Figure 2.  Different phase lines with equal group delay, where only Line 1 

defines an ideal  time delay b) Different points on Line2 corresponding to 
different time delays 

For Line 2 the time delay varies with frequency. Fig 2b 
illustrates this for two example frequencies f1 and f2, where the 
time delays are equal to τ1=-ϕ1/2πf1 and τ2=-ϕ2/2πf2 
respectively. So the group delay is the same, but the time 
delay is not, which shows that knowledge about group delay is 
not sufficient to quantify the amount of time delay versus 
frequency [3],[4].  

In section II we propose a new criterion fϕ=0 that relates the 
amount of time delay variation to the frequency range. In 
section III, the amount of time delay variation for circuits with 
a frequency dependent group delay is analyzed. Section IV 
gives examples, and derives fϕ=0 equations for two commonly 
used time delay circuits: an RC and an LC delay circuit. In 
section V we extract fϕ=0 for a cascade of time delay blocks. In 
section VI we verify the ability of the proposed criterion fϕ=0 

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 4281



to predict the time delay variation for the RC and LC delay 
circuits, while section VII draws conclusions. 

II. A NEW CRITERION (Fϕ=0 ) FOR TIME DELAY CIRCUITS 
Fig 3a gives an example for the phase vs. frequency 

characteristic of a typical time delay block (e.g. an RC delay 
circuit). If in the frequency range [f0-Δf, f0+Δf] the transfer 
function is approximated by a straight line, then two 
parameters are sufficient to fully characterize this line: 

1. The slope of the phase versus frequency, i.e. -τg 

2. The phase for at least one frequency point 

This point can be any point of the line in the relevant 
frequency band or any point on the linearly extrapolated phase 
line. We propose to use the point with zero phase where the 
line crosses the frequency axis and we will call this frequency 
fϕ=0. We introduce fϕ=0 as a new criterion to approximately 
quantify time delay variations inside the frequency band. The 
criterion has some interesting characteristics:  

1. fϕ=0=0 corresponds to ideal (constant) time delay 
behavior inside the band 

2. fϕ=0=±∞ corresponds to ideal (constant) phase shift 
behavior  inside the band. 

3. fϕ=0≠0 in combination with constant group delay 
corresponds to approximate time delay behavior, 
where the delay variation versus frequency can be 
predicted accurately.  

Fig 3b shows two transfer function examples with constant 
group delay inside the band [f0-Δf , f0+Δf] but with different 
fϕ=0≠0. We will now relate the time delay variation for these 
time delay block approximations, based on the center 
frequency of the band (f0), the frequency range (±∆f), the 
group delay (τg) and the proposed criterion (fϕ=0 ) which is 
shown in  Fig. 4. 

 
Figure 3.  (a) ϕ vs. f  for a frequency range which the curve is modeled as 

a straight line inside it .(b)  fϕ=0  can be used as a criterion to differ ϕ vs. f   
lines with equal group delays  

The amount of time delay at f0 is -ϕ(f0)/2πf0, whereas it is  
-ϕ(f0+∆f)/2π(f0+∆f) at f0+∆f, and -ϕ(f0-∆f)/2π(f0-∆f) at f0-∆f. 
Equation 2 defines the phase versus frequency, depending on 
group delay (τg) and fϕ=0. Equations 3 and 4 show time delays 
at frequencies f0 and f0+Δf.  We can also find the delay at f0-Δf 
from equation 2. However, because the ϕ vs. f transfer 
function of Fig 4 is odd symmetric around f0 the absolute 
delay variation from f0-Δf to f0 is equal to delay variation from  

f0 to f0+Δf. Because of this reason, we solve the equations only 
for upper half part of the frequency. 

 
Figure 4.  Illustration of a phase characteristic of a delay block which has 

constant group delay inside [f0-Δf , f0+Δf] 
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The ratio of the delay variation inside the band to the 
absolute value of the delay at f0 is useful to quantify the 
relative deviation of the delay that we can get inside the band 
(sometimes referred to as delay error or delay accuracy). 
Equation 5 shows this ratio and also an approximation for the 
condition ∆f/f0 <<1. Because group delay is considered 
constant in the frequency range, Equation 5 is independent of 
the group delay. 
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For a block with constant phase in the frequency band, fϕ=0 
becomes infinite and with condition ∆f/f0 <<1 equation 5 will 
result in equation 6: 
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For an ideal time delay, fϕ=0 is equal to zero and equation 5 
will result in:  
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In summary, if fϕ=0 is non-zero and the group delay is 
constant for a circuit, it can be used as an approximation of a 
time delay circuit. Equation 5 gives the relative variation of 
the time delay over the band. In the next section we derive the 
time delay variation for more realistic time delay blocks for 
which the group delay is frequency dependent. 
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III. TIME DELAY OF BLOCKS WITH FREQUENCY DEPENDENT 
GROUP DELAY 

Fig 5 shows ϕ vs. f characteristic of a typical practical 
delay circuit with a group delay that is frequency dependent. If 
we know the group delay of the characteristic at the center 
frequency f0 of the band, we can again derive an estimate of 
the delay for f0+∆f.  

 
Figure 5.  Phase vs. frequency transfer function with a frequency 

dependent group delay 

To this end we draw the slope-line at the point (f0,ϕ(f0)). 
This line crosses the f-axis at point fϕ=0, and hence the 
following equation holds: 
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If inside the band, the variation of the phase around f0 is 
not very large, we can approximate it with the first two terms 
of a Taylor series. In this case the calculations are identical to 
those in the previous section and the delay at f0+∆f can be 
estimated with equation 4, while the relative delay variation 
can be assessed by equation 5. 

If desired, of course a higher order Taylor series also can 
be used to take into account the effect of the curvature in the 
phase characteristic on delay as shown by equations 9 and 10: 
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If ∆f/f0<<1 then this equation can be approximated as:  
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        (10) 
However, for finding time delay, in many cases a linear 

approximation of the phase vs. frequency curve is enough and 
there is no need to use the second order term of the Equation 
10.  In the next section we explain how to find fϕ=0 at any point 
of the phase vs. frequency curve.    

IV. Fϕ=0 FOR AN RC AND LC CIRCUIT 
There are different types of time delay circuits and based 

on their structure they show different phase-frequency transfer 
functions. We will now solve equation 8 for two commonly 
used examples of delay blocks, an RC delay block and an LC-
segment of an infinite LC delay line [5]. If we assume that the 

operating frequency of an LC delay line is much less than 
(2π)-1(LC)-0.5, the load impedance which every segment sees at 
its output is real and equal to Z0=(L/C)0.5, (the “characteristic 
impedance”).  

Fig 6 shows an RC delay block and one segment of an LC 
delay line and their phase vs. frequency transfer functions.  

 
Figure 6.  Phase vs. frequency transfer function for (a) an RC delay block  

and (b) one segment of  an infinite LC delay line  

By substituting phase vs. frequency characteristics of each 
block of figure 6 into equation 8 the values of fϕ=0 can be 
found.  This substitution results in equations 11a for an RC 
delay block and 11b for an LC delay segment. 
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For an RC delay block the solution of equation 11a in 
terms of the fϕ=0 is: 
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If (2πRCf0)<<1, this equation simplifies to:                                              
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These equations show that the amount of fϕ=0 increases for 
higher center frequency, leading to more delay variation 
according to equation 5, which fits to the expectation. 

Similarly, equation 13a is the result of fϕ=0  for an LC delay 
segment and for ( )02 1LC fπ << , it reduces to equation 13b. 
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Again, we see an increase of the fϕ=0 for higher center 
frequency. 
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V. Fϕ=0  OF  THE CASCADED DELAY BLOCKS 
Fig 7 shows the phase vs. frequency of two different delay 

blocks for the range between f0 and f0+Δf. They have different 
group delay and fϕ=0. Cascading them with buffers in between 
which omits the loading effect between them, or cascading 
them without buffer but with considering the loading effect of 
the next stage on the previous one results in a new delay 
block. We will now derive the fϕ=0 for the cascade.  

 
Figure 7.  Cascading delay blocks  

The group delay of the cascade is equal to the sum of the 
group delays of each individual block and its fϕ=0  will be 
found by adding two transfer functions of fig 7 and finding the 
frequency for which the extrapolated phase is zero. The result 
of  fϕ=0  for  cascaded circuits is written in  equation 14. 
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Equation 14 shows that if two delay blocks are the same, 
then fϕ=0 will be the same as for the individual blocks. Also, 
for the LC delay line in Fig 6a, in which the loading effect is 
already taken into account, the fϕ=0 of the whole delay line is 
equal to that of each LC segment. 

VI. SIMULATION RESULTS: 
To examine the ability of the proposed criterion fϕ=0 to 

predict time delay variations over a frequency band, we 
continue with two examples of delay circuits: 1) an RC delay 
block and 2) an LC delay line. Suppose that both of them are 
designed for f0=1GHz and we want to evaluate their time 
delay variation at ±100 MHz around f0. For both of the 
examples we use linear approximation of the phase vs. 
frequency transfer function and we will show that it results in 
a reasonable approximation of the circuit behavior. 

Example 1: An RC time delay block (Fig 6a), with 
R=1KΩ, C=490fF, at f0=1GHz has a time delay equal to 
τd=200 psec. The question is now; what are the time delays at  
f0±(100 MHz)?. Substituting these values in equation 11 a and 
solving fϕ=0 at f0=1GHz, we find fϕ=0=-3.28 GHz. The 
maximum time delay variation inside the frequency band is 
found from equation 5. In Fig 8, curve (a) shows ϕ vs. f for the 
simulation results of the RC delay block. Table 1a shows the 
delays which results from calculation, simulation and the 
relative error of calculation results to simulation results.  

Example 2:  An LC delay line (Fig 6 b), with L=1nH, 
C=253fF, at f0=1GHz after the 12th cell shows a delay equal to 
τd=204.2psec (a delay value near to example 1). Again we 
want to find the time delays at f0±(100 MHz). Equation 13b 

can be used as 2π(LC) 0.5f0=0.1<<1. We find the value of fϕ=0 
for every LC delay cell which is loaded with Z0=(L/C)0.5. For 
every LC cell the calculation result is fϕ=0=-10MHz. Because 
the loaded LC cells are cascaded then equation 14 can be used 
for finding the overal fϕ=0 of the LC delay line which results 
in: fϕ=0,Circuit= fϕ=0,every cell=-10MHz. In Fig 8, curve (b) shows ϕ 
vs. f for the simulation results of the LC delay circuit. Table 
1b shows the delays which results from calculation, simulation 
and the relative error between them.  

 
Figure 8.  Curves (a) and (b) shows ϕ vs. f transfer function of  an RC 

delay cell and an LC delay circuit respectively  

Table 1. comparison of  the calculation and simulation results for (a)RC 
delay cell (b) LC delay circuit 

The results show that the formula predicts the simulation 
with quite acceptable accuracy (a few % over +/-10% 
frequency variation around the center frequency). 

VII. CONCLUSION 
This paper shows that group delay alone is not sufficient 

for characterizing the delay variation in delay blocks and 
proposes fϕ=0 as an additional criterion. The combination of 
fϕ=0 with the group delay allows for estimating the delay 
variations over a certain frequency band around center 
frequency f0.  Equations for fϕ=0  for an RC delay cell and LC 
delay section have been derived and compared to simulations, 
showing the prediction is within few percents over 10% 
frequency variation. 
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