

2009 International Microwave Symposium

Recent Advances in Low Jitter CMOS Clock Generation Stimulated by FoM Definitions

Eric Klumperink Xiang Gao, Paul Geraedts, Ed van Tuijl, Bram Nauta

IC Design group, CTIT, University of Twente Enschede, The Netherlands http://icd.ewi.utwente.nl

1

Outline

- Introduction
- Admittance Level Scaling
- FoM for Oscillator Phase Noise
- Relaxation Oscillator Design
- FoM for Absolute Jitter
- Multi-Phase Clock Generator Design
- FoM for PLL Jitter
- Sub-Sampling PLL Design
- Conclusions

Introduction: Why FoMs?

Why define a Figure of Merit (FoM)?

- Compare relative merits
- ... most beautiful?

Challenge in defining FoMs: "fair"

- Fundamental basis?
- Help designers to approach fundamental limits

Admittance Level Scaling Design recipe to lower noise:

Admittance Level Scaling

- Results:
- σ_v^2 /n
- Power x n
- Area x n

remarks:

- same voltage, currents x n
- poles/zeros not affected
- Bias-voltage related properties don't change

SNR improved x n, at cost of n x Power

More fair comparison:

Oscillator Phase-noise and FoM

Outline

- Introduction
- Admittance Level Scaling
- FoM for Oscillator Phase Noise
- Relaxation Oscillator Design
- FoM for Absolute Jitter
- Multi-Phase Clock Generator Design
- FoM for PLL Jitter
- Sub-Sampling PLL Design
- Conclusions

- + small area
- + large tuning range

+ small area

- + large tuning range
- + linear tuning
- poor phase-noise performance

Typical Figures of Merit

- theoretical limit relaxation oscillators
- theoretical limit ring oscillators
- practical ring oscillators
- practical relaxation oscillators

[Navid, JSSC05] @ 290K

Typical Relaxation Oscillator

Sources of 1/f² Phase-noise

Actual Implementation

First-order Design Choices

- standard 65nm CMOS ($V_{DD} = 1.2V$) • process:
- voltages:
- currents:

- $\Delta V_1 = \Delta V_2 = \Delta V_3 = 2V_{DD}/3$
- $I_1 = I_2/4 = 25 \mu A$
- capacitors: $C_1 = C_2 = 2.5 pF$

⇔ f_{osc} ≈ 12.5MHz

Micrograph

Typical Figures of Merit

- theoretical limit relaxation oscillators
- theoretical limit ring oscillators
- practical ring oscillators
- practical relaxation oscillators

[Navid, JSSC05] @ 290K

- + small area
- + large tuning range

- + small area
- + large tuning range
- + linear tuning
- poor phase-noise

Outline

- Introduction
- Admittance Level Scaling
- FoM for Oscillator Phase Noise
- Relaxation Oscillator Design
- FoM for Absolute Jitter
- Multi-Phase Clock Generator Design
- FoM for PLL Jitter
- Sub-Sampling PLL Design
- Conclusions

Maximum Voltage sampling error around zero crossing:

Must usually be smaller then LSB => absolute jitter requirement

FoM for Jitter

Long term absolute jitter relevant for ADC: σ_t

Jitter Variance scales with admittance, so:

$$FoM_{abs.jitter} = \sigma_t^2 \cdot P$$

Outline

- Introduction
- Admittance Level Scaling
- FoM for Oscillator Phase Noise
- Relaxation Oscillator Design
- FoM for Absolute Jitter
- Multi-Phase Clock Generator Design
- FoM for PLL Jitter
- Sub-Sampling PLL Design
- Conclusions

What and Why of Multi-phase Clocks

Example applications:

- Multi-phase harmonic rejection mixers (sofware radio)
- Fast Time-interleave A/D Converters
- High-speed serial datacommunication links

How Create Multi-phase Clocks?

Delay Locked Loop

• Shift Register acting as Divider:

Which has better performance (in FoM_{abs.Jitter})?

DLL Output Jitter

- Jitter Sources (thermal noise)
 - Voltage Controlled Oscillator (VCO)
 - Delay Units
 - Phase control loop
- DLL output jitter is lowest for low bandwidth
 - Control loop jitter negligible, VCO and DU jitter almost un-controlled
 - (Independent) jitter contributions of cascaded DUs accumulate:

 $\sigma_{t DUn}^2 = n \sigma_{t DU}^2$

 $\sigma_{t,DU,n}^2$

Shift Register (SR) Output Jitter

- Jitter Sources
 - VCO
 - D-flipflop chain
 - Flip Logic doesn't add jitter
- SR is an open-loop system for jitter
 - VCO and DFF chain jitter un-controlled
 - No jitter accumulation between DFFs (simply select & pass one CLK_{ref} edge)

$$\sigma_{t,DFF,n}^2 = \sigma_{t,DFF}^2$$

$$\sigma_{t,DFF,avgN}^2 = \sigma_{t,DFF}^2$$

Compare VCO Phase Noise/Jitter

VCO Performance evaluated via FOM: $FoM_{osc} = 10log(L(f_m)) + 10log(\frac{f_m^2}{f_{OSC}^2} \frac{P_{DC}}{lmW})$

- At DLL output:

$$\mathcal{L}_{DLL}(f_{m}) = \frac{10^{FoM_{osc}/10}}{P_{DC}/1mW} \cdot \frac{f_{OSC}^{2}}{f_{m}^{2}}$$

- At SR (divide-by-N) output

$$\mathcal{L}_{SR}(f_m) = \frac{10^{\text{FoM}_{osc}/10}}{P_{DC}/1mW} \cdot \frac{(N \cdot f_{OSC})^2}{f_m^2} \times \frac{1}{N^2} = \mathcal{L}_{DLL}(f_m)$$

For same VCO FOM and power: same transferred phase noise (jitter)

- LC VCO: inductor Q higher and area smaller at high f_{OSC}
- Shift Register also more flexible and "more digital"

Compare Generated Jitter

- Assume Current Mode Logic (CML) circuits
 - Good supply noise rejection
 - Low generation of delta-I noise
- CML delay unit

D

CLK

$$t_d \approx \ln 2 \cdot R_L C_L = \ln 2 \cdot \frac{V_{SW}}{I_B} C_L$$

CL K

• CML DFF part determining jitter:

D

DU Noise Jitter Analysis

• Delay unit jitter due to thermal noise

$$\sigma_{t}^{2} = \{2(1+\gamma+\gamma_{T} \frac{\alpha \cdot V_{SW}}{2V_{OV,T}})\} \times \frac{\kappa T/C_{L}}{(I_{B}/C_{L})^{2}} \qquad [Levantino, JSSC05]$$
Tradeoff jitter \Leftrightarrow power

• FoM based on admittance scaling:

$$\sigma_t^2 \cdot P_{dis} = \{ (1 + \gamma + \gamma_T \frac{\alpha \cdot V_{SW}}{2V_{OV,T}}) \frac{2\kappa T}{\ln 2V_{SW}} \} \times \frac{t_d}{I_B} \times \frac{V_{DD}I_B}{1mW} \approx c \times t_d$$

Power efficient low jitter: Minimize t_d!!

DU and Latch Delay

Conclusions:

- Choose Shift Register and keep latch delay small
- Similar conclusion for threshold voltage-mismatch
- Benefit strongest at low clock frequency

Outline

- Introduction
- Admittance Level Scaling
- FoM for Oscillator Phase Noise
- Relaxation Oscillator Design
- FoM for Absolute Jitter
- Multi-Phase Clock Generator Design
- FoM for PLL Jitter
- Sub-Sampling PLL Design
- Conclusions

Classical PLL Noise

- Loop noise multiplied by N, dominates in-band

- In optimized PLL, Loop and VCO noise contribute equal jitter[1]
 - We ignore 1/f noise as its contribution to jitter is usually negligible
 - Relating long term absolute jitter with phase noise

PLL Benchmarking FOM

Proposed PLL benchmark Figure-of-Merit [1]

$$FOM_{PLL} = 10\log[(\frac{\sigma_{t,PLL}}{1s})^2 \cdot \frac{P_{PLL}}{1mW}]$$

To optimize FoM_{PLL} for a classical PLL:

- Loop and VCO have equal jitter contribution (optimum bandwidth)
- Design quality of Loop and VCO is equally important

$$FOM_{PLL} \propto FOM_{loop} + FOM_{VCO}$$

- Loop and VCO have equal power consumption
- f_{out} and f_{ref} do not affect FoM_{PLL} for optimized case assuming:
 - Long-term absolute jitter
 - Only dynamic loop power dissipation
 - No significant flicker noise
 - Divider power proportional to f_{ref}
 - Steep enough Reference clock

Outline

- Introduction
- Admittance Level Scaling
- FoM for Oscillator Phase Noise
- Relaxation Oscillator Design
- FoM for Absolute Jitter
- Multi-Phase Clock Generator Design
- FoM for PLLs
- Sub-Sampling PLL Design
- Conclusions

Classical PLL Noise

- Loop noise multiplied by N, dominates in-band
- In optimized PLL, Loop and VCO noise contributes equally

This work focuses on reducing loop noise

Noise from CP referred to Output

Main loop noise sources: usually CP and divider

- Define a CP feedback gain: $\beta_{CP} = \frac{1}{N} \times K_d$
- Inside bandwidth, loop gain is big:

$$\phi_{n,out} \approx \frac{i_{n,CP}}{\beta_{CP}}$$

CP noise suppressed by β_{CP} , large β_{CP} desired

Classical 3-state PFD/CP

• CP Feedback Gain $\beta_{CP,3state} = \frac{1}{N} \times \frac{I_{CP}}{2\pi}$

Can we get rid of N?

Sub-Sampling PD/CP (SSPD/CP)

Voltage controlled CP

Ideal characteristic

Detection is fairly linear once in lock

$$\beta_{CP} = K_d = \frac{\Delta I_{out}}{\Delta \phi_{out}} = \frac{g_m \cdot A_{VCO} \sin(\Delta \phi_{VCO})}{\Delta \phi_{VCO}} \approx g_m A_{VCO}$$

Yes, we can get rid of N!

SSPLL VS Classical PLL

Divider noise

SSPLL can work without divider

$$\frac{\beta_{CP,SSPD}}{\beta_{CP,3state}} = 4\pi \cdot N \cdot \frac{A_{VCO}}{2I_{CP} / g_m} = 4\pi \cdot N \cdot \frac{A_{VCO}}{V_{gs,eff}} >>1$$

SSPLL has much larger β_{CP} to suppress CP noise! e.g. N=50, A_{VCO}=0.4V, V_{gs,eff}=0.2: 1000x bigger

β_{CP} and Filter Cap

In SSPLL, CP noise becomes negligible

Even larger β_{CP} hardly affects overall loop noise and f_c but requires bigger C to stabilize the loop

Some way of β_{CP} control is desired

SSPD/CP with Gain Control

A proper choice of DR_{pul} reduces Cap area while still making CP noise negligible

Proposed SSPLL Architecture

- **1.** During locking, $\Delta \Phi > DZ$, FLL has large gain, brings loop to lock
- 2. Close to locking, $\Delta \Phi < DZ$, FLL has zero gain, not injecting noise

VCO & Sampler Design

Differential sampling doesn't need V_{DC}, cancels clock feed-through and charge injection

Die Photograph

- 0.18um CMOS
- 24-pin LLP package
- Active Area: 0.18mm²
- **VDD: 1.8V**
- Power Consumption
 - VCO 1mA
 - Core Loop 3.2mA
 - FLL 0.8mA (disabled after locking)

[Gao,ISSCC09]

Measured Phase Noise

In-band Phase Noise: -126dBc/Hz @ 200kHz

Integrated Jitter [10k, 40M]: 0.15ps

ISSCC Low Jitter PLL Comparison

This work improves FOM by 9.5dB, normalized to same jitter, it consumes ~10x less power

Conclusions

- Admittance level scaling: n x SNR at cost of n x P_{dis}
 ⇔ FoM should normalize for admittance scaling
- Useful FoMs for phase noise and jitter (low⇔ good):

FoM_{osc} = £(f_m)
$$\left(\frac{f_m}{f_{osc}}\right)^2 \frac{P}{1 \text{ mW}}$$

FoM_{abs.jitter} = $\sigma_t^2 \cdot P$
FoM_{PLL} = 20log $\frac{\sigma_t}{ls}$ + 10log $\frac{P}{lmW}$

- Designs stimulated by FoM Definitions:
 - Relaxation oscillator with FoM_{osc} similar to Ring Oscillators
 - Smaller delay \Leftrightarrow better FoM_{abs.jitter} \Leftrightarrow SR better then DLL
 - Sub-Sampling PLL with 10x better FoM_{PLL}

Literature

[Vaucher,Kluwer02] C. S. Vaucher, Architectures for RF Frequency Synthesizers, Kluwer, 2002

- [Levantino, JSSC05] S. Levantino, et al., "Phase noise in digital frequency dividers", IEEE J. Solid-State Circuits, vol. 39, no.5, pp. 775 784, May 2004.
- [Klumperink, JSSC04] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, and B. Nauta, "A CMOS switched transconductor mixer," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 1231-1240, 2004.
- [Navid, JSSC05] R. Navid, T. H. Lee, R. W. Dutton, "Minimum Achievable Phase Noise of RC Oscillators," IEEE J. Solid-State Circuits, Mar. 2005, pp. 630-637.
- [Shrestha, JSSC06] E. Mensink, E. A. M. Klumperink, and B. Nauta, "Distortion cancellation by polyphase multipath circuits," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, pp. 1785-1794, 2005.
- [Klumperink,ComMag07] E.A.M. Klumperink, R. Shrestha, E. Mensink, V.J. Arkesteijn, B. Nauta, "Cognitive radios for dynamic spectrum access polyphase multipath radio circuits for dynamic spectrum access", IEEE Communications Magazine, Volume 45, Issue 5, May 2007 pp. 104 112.
- [Geraedts, ISSCC08] Geraedts, P.F.J., Tuijl, A.J.M. van , Klumperink, E.A.M., Wienk, G.J.M., Nauta, B., "A 90µW 12MHz Relaxation Oscillator with a -162dB FOM", 2008 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, February 8-12, Digest of Technical Papers, pp. 348-349+618, 2008, ISBN 978-1-4244-2011-7.
- [Gaol,TCASII08] X. Gao, E.A.M. Klumperink, B. Nauta, "Advantages of Shift Registers Over DLLs for Flexible Low Jitter Multiphase Clock Generation", IEEE Transactions on Circuits and Systems II, vol. 55, no.3, pp. 244-248, March 2008.
- [Gao, ISSCC09] Xiang Gao, Eric Klumperink, Mounir Bohsali, and Bram Nauta, "A 2.2GHz 7.6mW Sub-Sampling PLL with -126dBc/Hz In-band Phase Noise and 0.15psrms Jitter in 0.18µm CMOS", ISSCC, Feb. 2009.
- [Gao, TCASII09] Gao, X., Klumperink, E.A.M., Geraedts, P.F.J., Nauta, B., "Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops", IEEE Transactions on Circuits and Systems II, vol. 56, no.2, pp. 117 -121, Feb. 2009.