A Systematic Approach to MOST Circuit Design and Analysis:

Classification of 2VCCS Circuits

Eric A. M. Klumperink

University of Twente Department of Electrical Engineering Enschede, The Netherlands

MESA Research Institute

Contents

Introduction: Motivation and Aim

A Design Philosophy for MOST Circuits

=> PhD Thesis: "Transconductance Based CMOS Circuits"

A Classification System for 2VCCS Circuits

Application Examples

Conclusions

Introduction: Problem and Aim

Analog Computer Aided Design:

- Analysis well developed, e.g. simulation, symbolic analysis
- Synthesis largely intuitive, especially for *transistor topology*

AIM: Systematic approach

• Literature: fragmentary, many circuit topologies!

Questions: Variations on a theme? Relative merits?
=> Aim: 1) *Create overview* of different possible topologies
2) *Predict* and *compare* circuit *performance*

A Design Philosophy for MOST Circuits

Classify on what? What is important during design? MOST design experience:

- Combine simple basic circuits (differential pair, mirror) few components <=> HF, low noise, low current
- Mainly MOSTs, saturated region (current output)
- Transconductance g_m of MOST is crucial:
 - Good model up to high frequencies
 - Matching of transconductance is good (< 1%)
 - Electronic variability (self-correction/adaptivity)
 - Large g_m-range: nS....S

PhD Thesis: Transconductance Based CMOS Circuits

• MOST = Voltage Controlled Current Source (VCCS)

- Synthesize linear two-ports with *only VCCSs*
- All two-ports with 2 VCCSs (Circuit Generation)
 - => 145 topologies, covering most needs => <u>2VCCS circuits</u>

Classification of 2VCCS Circuits

Analyse electrical behaviour:

- Analyse two-port parameters
- VCCS variables are crucial!
- 4 eqns needed (4 VCCS vars)
- $I_a = g_a V_a$ and $I_b = g_b V_b$ available
- 2 additional topology related KVL/KCL relations needed!

Non-linear case: square-law and exponential I(V) also 2 eqns.

Set of 2 independent Kirchhoff relations needed!

All classes of 2VCCS Circuits

• Types of Kirchhoff relations:

• ALL Sets of 2 relations: 3 main classes and 14 subclasses:

Eric A.M. Klumperink: Classification of 2VCCS Circuits

Application Examples

Recognise variations on a theme: 50 V-I Kernels in 4 classes

Eric A.M. Klumperink: Classification of 2VCCS Circuits

Generating all Classes of V-I kernels with 2 VCCSs

Class	Vin	1 st order coeff.Ia,Ib	2nd order coeff.Ia,Ib	3rd order coeff.Ia,Ib
$\{\mathbf{V}_{\mathbf{P}}, \mathbf{V}_{\Sigma}\}$	V _P	g _{1a} , - g _{1b}	g _{2a} , g _{2b}	g _{3a} , - g _{3b}
	V_{Σ}	$0, g_{1b}$	$0, g_{2b}$	$0, g_{3b}$
$\{\mathbf{V}_{\mathbf{P}}, \mathbf{V}_{\Delta}\}$	V _P	g _{1a} , g _{1b}	g _{2a} , g _{2b}	g _{3a} , g _{3b}
	\mathbf{V}_{Δ}	$0, g_{1b}$	$0, g_{2b}$	$0, g_{3b}$
$\{\mathbf{V}_{\Sigma}, \mathbf{V}_{\Delta}\}$	\mathbf{V}_{Σ}	$g_{1a}/2, g_{1b}/2$	$g_{2a}/4, g_{2b}/4$	$g_{3a}/8, g_{3b}/8$
	\mathbf{V}_{Δ}	$g_{1a}/2,-g_{1b}/2$	$g_{2a}/4, g_{2b}/4$	$g_{3a}/8,-g_{3b}/8$
$\{V_{\Sigma}, I_{P}\}$	V_{Σ}	$0, g_{1b}$	$0, g_{2b}$	$0, g_{3b}$
$\{V_{\Delta},I_{P}\}$	\mathbf{V}_{Δ}	$0, -g_{1b}$	$0, -g_{2b}$	$0, -g_{3b}$
$\{V_{P},I_{\Sigma}\}$	V _P	g _{1a} ,- g _{1a}	$g_{2a}, -g_{2a}$	g _{3a} , - g _{3a}
$\{V_{P},I_{\Delta}\}$	V _P	g _{1a} , g _{1a}	g_{2a}, g_{2b}	g _{3a} , g _{3b}
$\{V_{\Sigma},I_{\Sigma}\}$	V_{Σ}	no solution	no solution	no solution
$\{\mathbf{V}_{\Sigma},\mathbf{I}_{\Delta}\}$	\mathbf{V}_{Σ}	$g_1/2, g_1/2$	$g_2/4, g_2/4$	$g_3/8, g_3/8$
$\{\mathbf{V}_{\Delta},\mathbf{I}_{\Sigma}\}$	\mathbf{V}_{Δ}	$g_1/2, -g_1/2$	0,0	$g_3/8-(g_2^2/4g_1)$
$\{\mathbf{V}_{\Delta},\mathbf{I}_{\Delta}\}$	\mathbf{V}_{Δ}	no solution	no solution	no solution

Required: \geq 1 KVL	relation.	Result: 4 realy	different classes
-------------------------------	-----------	------------------------	-------------------

@= equal g-coefficients for VCCSa and VCCSb ; **BOLD=different from 1VCCS**

Comparison of V-I Kernels: Figure of Merit NDR/ISS

• DR=S/N depends on distortion and noise bandwidth NBW! Assume dominant HD3:

$$HD3 \approx \frac{g_3}{4g_1} \hat{V}_{in}^2 = \left(\frac{\hat{V}_{in}}{V_{IP3}}\right)^2$$

- Normalise: HD3 = 100% and NBW =1Hz ($NDR = \frac{NBW}{HD3}DR$)
- Figure of Merit independent of scaling:

 $\frac{\text{NDR}}{\text{ISS}} = \frac{\text{S}}{\text{N} \cdot \text{ISS}} \Big|_{\substack{\text{HD3}=100\%\\\text{NBW}=1\text{Hz}}} = \frac{\frac{1}{2} \text{G}_{\text{m}} \text{V}_{\text{IP3}}^2}{4 \cdot \text{k} \cdot \text{T} \cdot \text{NEF} \cdot \text{I}_{\text{SS}}}$

Model I(V) and noise of VCCS and analyse NDR/ISS!!!

Compare MOST V-I Kernels: 3 Operating regions

Draw General Conclusions on Relative Merits

- Exponential VCCS: worst result (different scales!)
- $\{V_{\Sigma}, I_{\Delta}\}$ Square-law or Linear VCCSs (S4 and L4) best!

Assess Feasibility: e.g. effect of increased θ

• Results are reference for circuits design (best achievable)

Assess feasibility, e.g. in newer technology: higher θ
=> worse NDR/ISS, except differential pair (S3)

Conclusions

Classification system proposed based on sets of 2 Kirchhoff relations establishing a solution for the variables of the VCCSs.

Usefulness shown:

- Overview of all possibilities with 2 VCCSs
- Recognise variations on a theme: 50 Kernels, 4 classes
- Analyse classes of circuits in one run: general conclusions
- Guide designers in choosing and optimising circuits
 - Select class with best DR/ISS
 - Use best achievable NDR/ISS as land-mark during design