Reduction of Intrinsic 1/f Device Noise in a CMOS Ring Oscillator

Sander L.J. Gierkink, E.A.M. Klumperink, T.J. Ikkink, A.J.M. van Tuijl*

IC-Design Group MESA Research Institute University of Twente, Enschede, The Netherlands http://icd.el.utwente.nl *also with Philips Research, Eindhoven, The Netherlands

Outline

- Introduction
- 1/f device noise under switched bias conditions \Rightarrow reduction !
- (How) does 1/f noise reduction appear in a ring oscillator ?
- Ring oscillator phase noise measurements
- Conclusions

- Jitter measurements : lower 1/f frequency noise contribution than expected
- \Rightarrow does the intrinsic MOS 1/f noise change due to periodical switching ?
- \Rightarrow (how) does this affect a ring oscillator's phase noise ?

1/f device noise under switched bias conditions

measurement setup

Baseband measurement result

switching of MOS transistor → reduction of *intrinsic* 1/f device noise [see also : Bloom & Nemirovsky, Applied Physics Letters 1991] How does V_{GS_OFF} affect the baseband 1/f noise spectrum ?

$$V_{GS_OFF} \downarrow \implies \text{ intrinsic MOS 1/f noise } \downarrow$$

(How) does 1/f noise reduction appear in a ring oscillator ?

How to vary the $V_{GS \ OFF}$ of the transistors easily ?

 $R_n^{\uparrow} \Rightarrow \bullet V_{GS_OFF}^{\downarrow} \Rightarrow 1/f \text{ noise induced phase noise } \downarrow ?$

• f_{osc} hardly changes

Phase noise measurement results (1)

Phase noise measurement results (2)

-70 ደ(f_m) 0.98 [dBc/Hz] -80 F_{OSC} V_{MIN} V_{MAX} -90 [MHz] [V] [V] -0.10 6.17 -0.10 4.5 -100 7.03 4.2 0.22 -110 0.98 7.94 3.9 1K 10K Carrier offset frequency f_m [Hz]

 $V_{DD} = 4.5V$

Corrections are needed

Correction for changes in upconversion

Measurement of upconversion (1)

Measurement of upconversion (2)

Example : i_{inj} : 1µA @ 10 kHz

-	
injection	upconversion
at node :	[dB]
а	- 52.96
b	- 69.63
С	- 39.67

V _{inj} : 0.3mV @ 10 kHz	
injection	upconversion
at source :	[dB]
NMOS	- 39.92
PMOS	- 49.13

Correction for changes in V_{GS_ON}

Phase noise measurement results after correction

Conclusions

- phase noise measurements of a CMOS ring oscillator can be related to baseband 1/f device noise measurements : $V_{GS_OFF} \downarrow \implies 1/f$ device noise \downarrow
 - \Rightarrow 1/f noise induced phase noise \downarrow

(design criterium)

• upconversion should be taken into account

